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Abstract—In order Lo investigale the heal transler past particles entrained in an oscillating flow with and
withoul a steady velocity, the ilwo-dimensional, unsteady conservation equations ol mass, momentum and
energy for laminar flow in the gas phase are solved numerically in spherical coordinates. The particle
momentum equation is also solved simultaneously with the gas phase equations in order to consider the
effect of the particle entrainment on the heat transfer past particles. The numencal solution gives the
particle velocity variation as well as the gas phase velocity and temperature distribution as a function of
time. The local and space-averaged Nusselt number with particle entrainment is compared with Lhalt
without particle entrainment. In the case of an oscillating flow with a steady velocity, the values of the
space-averaged Nussell number with particle entrainment are lower than those without particle entrainment
at frequencies of 50 and 2000 Hz, since the moving particle is entrained in the steady velocity. In the case
of an oscillating flow withoul a steady velocity, the space-averaged Nusselt number with entrainment at a
frequency of 50 Hz is slightly lower Lhan that without particle entrainment, with a phase lag. At 2000 Hz,
the space-averaged Nussell number with and without particle entrainment is almost the same, due to very
small particle entrainment.
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INTRODUCTION

THE EFFeCT of an oscillating flow field with and with-
oul a steady veiocily component on heat and mass
transfer from single spherical particles and droplets
has been a topic of investigation since the lale 1930s
[1]. Some examples of these theoretical and exper-
imental studies can be found in refs. [2-7]). These
publications report an increase, decrease or unno-
ticeable change in heat and mass transfer, depending
on the frequency and the magnitude of the steady and
oscillating low. Zinn et al. [8] and Faeser [9] indicated
the positive effects of high intensity acoustics on coal
combustion by using acoustic drivers or pulsed com-
bustion. Koopmann e: al. [10] investigated the effects
of high intensity acoustic fields on the rate of com-
bustion of coal-water slurry fuel in the sonic combus-
tor. Yavuzkurt et al. [11, 12] calculated a decrease of
15.7 and 12.1%, respectively, in the char burn-out
length for a sound pressure level of 160 dB and at a
frequency of 2000 Hz compared to the case with no
sound for the combustion of 100 um pulverized coal
or coal-water slurry fuels.

The previous studies are generally concentrated on
experimental and theoretical studies showing the
effects of oscillating Aow field on heat and mass trans-
fer and combustion past particles, in which it is usually

assurned that the particle is stationary relative to its
gaseous environment. Thus, the particle momentum
equation is not included with the constant slip velocity
between the particle and the bulk gas stream.
However, in the initial stages of combustion of pul-
verized coal or coal-water slurry droplets, there exists
a steady slip velocity, U,. This steady slip velocity
decreases during combustion since coal particles or
particle agglomerates become entrained in the main
gas flow. During the later stages of pulverized coal or
coal-waler slurry fuel combustion, the slip velocity
between the entrained particles and the gas is quite
low for a significanl period of time, leading to low
heat and mass transfer to and from the particles. For
this situation, the particle momentum equation should
be solved simultaneously with gas phase equations
and the slip velocity continuously changes depending
on the particle trajectories.

In order to investigate heat transfer past particles
entrained in an oscillating flow with a steady velocity
component, an oscillating flow, U,cos(2nf1),
induced by the high intensity acoustic fields is super-
posed on the mean steady flow, U, in the present
study. The two-dimensional, unsteady conservation
of mass, momentum and energy equations for a lami-
nar flow past particles in spherical coordinates was
solved simultaneously with the particle momentum
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NOMENCLATURE

dB  decibel Greek symbols
D diameler p angular direction defined in the
! frequency streamwise direction
hy local heat transfer coefficient Y specific heat
i slatic enthalpy Iy diffusivily for general variable ¢
k thermal conductivity £y convergence criteria
n, particle mass 3 velocity ratio
Nu  Nusselt number 0 angular direction
P pressure m viscosity
Pr Prandtl number Pe gas density
r radial position T dimensionless time ( ft or t/T)
R radius of particle T, quasi-steady dimensionless time
R gas constant 0] general variable given in equation (1)
Re, steady Reynolds number, W angular frequency.

(UoDfp)
Re, acoustic Reynolds number, Subscripts

(U,Dfw) g gas
S Strouhal number, (fD/U,) new new values
Ss source term [or general old old values

variable ¢ p particle
t time r radial
T temperature s space-averaged
T period s separation
u, radial velocity 0 steady
uy axial velocity 0 mitial
U, steady slip velocity 1 acoustic
U, acoustic peak velocity 0 angular
o, gas velocily ¢ dependent variables
v, particle velocity. 3] infinity.

equation. The results obtained considering particle
entrainment are compared with those without entrain-
ment.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The hydrodynamic and thermal characteristics of
an oscillating flow created by an acoustic field over a
single particle are studied by solving the unsteady and
two-dimensional axisymmetric conservation equa-
tions for constant property, laminar flow with the
following common form [13}:

1
z o (”P“d’)+4

030 (sm 0 puy)

1 o

(Pd))
_ 1oL ,.00 ¢

=7 (r"" a,> ~ sm060<r"' S‘“oaf))”‘"
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The flow field and the particle geometry with some
nomenclature are shown in Fig. I. In the conservation
of momentum equation, ¢ = u,, u, represents the vel-
ocities in the radial r and axial 8 directions, respec-

tively. In the energy equation ¢ =i is the static
enthalpy. The source terms S, in equation (1) are
given in Table 1. The quantities are allowed to vary
in the radial (r) and axial (0) directions whereas a
circumferential symmetry is assumed around an axis
which passes through the center of the particle and is
parallel to the flow direction.

The governing equation (1) has the following initial
and boundary conditions.

Initial conditions (1t = 0):
¢ = da. (2)

Ul cos 2xfi

High intensity acoustic field

F1G. [. Schematic diagram showing the geometry and some
of the nomenclature used to simulate heat transfer past a
spherical particle entrained in an oscillating flow.
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Table 1. Source terms in S, in equation (1)
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Boundary conditions (t > 0):
i

a0 = =0 and

0, at 7 (symmetry conditions)
(3)
¢=¢, at r=R (4)
and asr — o
uy = —[Uy+ U, cos (2a f1)]sin O

. = [Ug+ U, cos (2n f1)] cos 0 (5)

u

=i

P

In equations (4) and (5), ¢, represents the value of
the dependent variable ¢ at the particle surface, U, is
the steady component of the flow velocily with respect
to the particles and U, is the peak value of the acoustic
velocity as defined by :

\/2 lotl_r‘—‘)-ll/l()
' p(RTY*? ©)
where L, represents the sound pressure level with the
unit of dB. The present study considers only the case
ol a longitudinal acouslic field. Thus the steady
velocity, U,, and acoustic velocity, U, cos (2n f1), are
co-linear. The velocities u,, and u,, in equation (4)
are zero. The static enthalpy i, is a constant value
determined by a specified particle temperature.

In the presence of oscillating flow fields, the particle
is at least partially entrained (but with a phase lag)
in an oscillating flow field. At high frequency, the
magnitude of this entrainment is small. However, at
low frequency, the particle is substantially entrained
in the surrounding gas fields. In the present calcu-
lations, the particle momentum equation is included
in order to consider particle entrainment.

The particle momentum equation is expressed as
[10]:

nzp% = Ty(ey—tp) (7)

where
[y =4nR*pCylv,—1,|/2 (8)
Cy = (24/Re)(1 +0.15Re™*7) (9

Re = |v,—v,|D/u (10)

where ¢, in equation (7) represents the particle velocity
and v, represents U+ U, cos (2n f1) for the oscillating
flow due to the acoustic field with a steady velocily
component.

METHOD OF SOLUTION

The particle momentum conservation equation (7)
with an unknown r, are coupled to the gas phase
conservation equations (l) with four unknowns
(4, up. p,i). Thus, coupled, nonlinear, unsteady and
two-dimensional conservation equations with a tolal
of five unknowns need to be solved simultaneously.

If the coordinate system is fixed in the ground, the
grid system in the solution domain should move with
the particle in order Lo consider particle entrainment.
This is very difficult to implement numerically. In
order o solve this problem, the coordinate system is
fixed on the entrained particle. This results in the
following exlra source terms of the u, and v, since the
coordinate system 1s noninertial :

S, =8+ sing n

wy = Su, TP q Sn (I
de

S., = S.,—p 3= cos 0. (12)

The boundary conditions for &, and u, as r —» oo are
also adjusted as follows:

uy= —[Ug+ U, cos2nfr)—v,]sin@  (13)

(14)

The gas phase equations are first solved using the
same SIMPLEC procedure of Doormaal and Raithby
[14]. Using this solution, the particle conservation
equations are solved to yield the updated source lerms
for the gas phase, since the particle is entrained in the
surrounding gas fields. The gas phase equations are
solved again using these updated source terms, estab-
lishing the new solution for the gas field. This iterative
procedure is repeated until the convergence criteria ¢,
for the gas phase equations given by equation (15) are
satisfied.

u, = [Uy+ U, cos (2n fi) —v,] cos 0.

¢ncw - ¢n|d

¢ncw

where ¢4 represents the values of the previous iter-
ation and ¢,., the updated values from the present
iteration for u,, u, and i.

The numerical solutions of the gas phase equation

(15)

& =D
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(1) and particic momentum equation (7) give the vel-
ocity and temperature fields [or oscillating flow over a
spherical particle as a function of time, with a particle
velocily history. From the calculaled temperature dis-
tribution, the local Nusselt number, Nu,. is calculated
as

h,D

Nuy=——=

k  (T,—-T,) ér

(16)

Integrating the local Nusselt number in the axial
direction, the space-averaged Nusselt number, Nu,, is
obtained. This is given by the following equation :

l "
Nu, = J Nu, d). (17)
)

RESULTS AND DISCUSSION

In the present simulation of heat transfer (o and
from a single spherical particle, the fluid is air with a
free stream temperature ol 20°C. The parlticle tem-
perature is taken to be 40°C. The thermophysical
properties such as viscosity, thermal conductivity,
specific heat, etc. are calculated at a film variation
between 20 and 40°C. The particle diamelter is fixed
at 100 pm in order to consider heat and mass transfer
to and from small spherical particles such as pul-
verized coal particles and coal-water slurry droplets.
The numerical solution domain is chosen to be 20
times the particle diameter with 30 grid points in the
0. and 50 in the r direction. The steady velocity (U,),
the amplitude of the oscillating velocity (U,) and the
frequency (/) of the applied acoustic field are varied
in order to obtain the values of the Nusselt numbers
for different steady and acoustic Reynolds and Strou-
hal numbers. One period or cycle is divided inlo 40
uniform time intervals, so that or = 1/40 f 1s used as
a numerical time step. A value of 0.005 is used for &,
in equation (15) as a convergence criterion in the
present simulation.

Figure 2 shows a comparison of the separation
angle fi; (measured in degrees) from Lhe front stag-
nation point, obtained from the present simulation,
with Lhe approximate correlation given by Clift et al.
[15], obtained from the numerical and experimental
results for the steady Reynolds number range of
10400 (without a superposed oscillating velocity,
Re, = 0). As shown in Fig. 2, the present results [or
the separation angle 8, represent well the correlation
given by Clift er al. [15]. Figure 2 also shows a com-
parison of the Nusselt number obtained from the pre-
sent simulation with previously published numerical
and experimental results in refs. [3, 16-19] for the
steady Reynolds number range of 10-100 (withoul a
superposed oscillating velocity, Re, = 0). The present
results agree well with the numerical results given by
Sayegh and Gauvin [16]. Sayegh and Gauvin indi-
cated excellent agreement between previous numerical
results and their calculations. They used a 30 x 40 grid

180
—— 8. =180-42.5[In(Re. /20)]
O Present Results
o 1604
»
1>
)]
LY
a
oy
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120
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64 Nu, -2 = 0.493Res®. Yuge
5_
O  Prasent results
4
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I 3
o
3
P
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Sayegh & Gauvin
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F1G. 2. Comparisons ol separation angle (f,) and Nusselt
number (Nu,—2) obtained from Lhe present simulation, with
previous numerical and experimental resulls.

in the 0 and r directions, respectively. However, the
present results are scmewhat higher than Yuge’s cor-
relation [17] obtained from experimental data for
Reynolds numbers around 100 and are somewhat
lower for Reynolds numbers around 10. This is also
true for the numerical results of Sayegh and Gauvin
[16]) and Wong et al. [18]. For the case of an oscillating
flow with and without a steady velocity component
under the assumption that the particle is not entrained
but is stationary in the presence of an oscillating flow,
the results for space- and time-averaged Nusselt num-
ber using a present code represent well the correlations
obtained [rom the quasi-steady analysis for a fre-
quency of 50 Hz, as shown by Ha [7]. Under the
assumptions ol no particle entrainment, the particle
momentum equation (7) is not considered (v, = 0).
These comparisons show that the present code is
adequate for predicting the steady and oscillating flow
field and heat transfer for a spherical particle.

Oscillating flow with a steady velocity

Figure 3 shows the oscillating flow U, the entrained
particle velocity v, and the relative velocity (U—v,) at
50 Hz, in order to investigate heat transfer past par-
ticles entrained in an oscillating flow with a steady
velocity component. The applied acoustic field U
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U, m/s

5
LR
DIMENSIONLESS TIME

vp. m/s
-
1

o 1 2z 5 4 5
DIMENSIONLESS TIME

U-v, m/s

_5 T T T
6 1 2 ) JURY Y
DIMENSIONLESS TIME

FI1G. 3. Oscillating flow U, the entrained particle velocity v,
and the relative velocity (U—r,) as a function of dimen-
sionless time: Re, = 62.9, Re, = 31.5, 5 = 0.0005 (/' = 50 Hz).

oscillates with an amplitude of U/, = 5m s~ ' around

a steady velocity of U, = 10 m s~ '. During the initial
and transient period, the particle velocity increases to
about 10 m s~' due to a major contribution of a
steady velocity U, meaning that the particle is almost
entrained to the steady flow. After a steady periodic
state i1s reached, meaning that the particle velocity
over a cycle is the same as the value obtained in the
following cycles, the particle velocity oscillates with
an amplitude of about 1.24 m s~' around a steady
velocity of 10 m s~ '. The phase lag between the gas
and particle velocity is about 78° (r = 0.2). Thus the
relative velocity (U—w,) has an initial decrease due to
particle entrainment, followed by the steady periodic
oscillation with an amplitude of about 4.7 ms™', as
shown in Fig. 3. The phase lag between the gas and
relative velocity is about 18° (z = 0.05). Even though
the particle oscillates with an amplitude of 1.24 m s~
around a steady velocity of 10 m s™', the amplitude

ol relative velocity still has a value of 4.7 m s~ ' slightly
lower than the oscillating velocity U, (=5 m s~ '),
due to the phase difference. Thus, the boundary layer
formed over the particles 1s reversed with every half-
period of an oscillating low. However, for stationary
particles exposed to an oscillating flow with and with-
oul a steady velocity as shown in experimental works
[3-5] and theoretical works [7], the particle velocity is
zero and the relative velocity 1s the same as an oscil-
lating flow. Thus Lhe relative velocity with no particle
entrainment oscillates with an amplitude of 5 m s~
around a steady velocity of 10 m s~' and the Aow
direction is always from left to right, unlike the casc
with particle entrainment having a flow direction
reversing every hall-period after a steady periodic
state is reached. These results show that the heat
transfer past particles with entrainment has different
characleristics compared with that without entrain-
mentL.

Figure 4 shows Lhe local Nussult number vanation
with angle [or Re, = 62.9 and Re, =31.5 at a fre-
quency of 50 Hz. The local Nusselt numbers with
particle entrainment are compared with the quasi-
steady, local Nusselt number withoul particle entrain-
ment. The Nusselt number is plotted as Nu,—2 to
separate effects of pure conduction from convection.
Nu, = 2 corresponds lo a pure conduction value.
Nu,—2 with entrainment decreases with increasing
particle velocity due to the particle entrainment (see
Fig. 3), followed by the steady periodic state after
about four cycles. The relative velocities with entrain-
ment at T = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 are 15, 6.24,
4.88,4.64,4.59 and 4.58 m s~ ', respectively, resulting
in the decreasing Nu,— 2 with decreasing relative vel-
ocity due to particle entrainment, as shown 1n Fig. 4.
However, the relative velocily without entrainment
is 15 m s™', giving Nu,—2 varying in the range of
0.7 ~ 10.64, larger than Nu,—2 with entrainment
varying in the range of 0.1 ~ 5.1 at 1 = 5.0. At these
dimensionless times, the flow direction at infinity is
from left to right both with and without particle
entrainment, in the coordinate system as shown in
Fig. 1. Thus Nu,—2 has a maximum value at the
stagnation point at & = 180 and decreases along the
stream-wise direction (6 = 180 —» 6 = 0). In the fol-
lowing dimensionless times of T =0.25, 1.25, 2.25,
3.25,4.25and 5.25, the relative velocities with entrain-
ment are 4.78, —0.095, —0.24, —1.15, —1.17 and
—1.18 m s™'. Thus the flow direction at T = 0.25 is
from left to right with a stagnation point at 6 = 180.
But the flow direction at t = 1.25, 2.25, 3.25, 4.25
and 5.25 is reversed to that from right to left with a
stagnation point at @ = 0. The relative velocity with-
out entrainment is 10 m s~' with a stagnation point
at 0 = 180 with a flow direction from left to nght,
giving Nu,—2 varying in the range of 0.04 ~ 8.4,
larger than Nu,—2 with entrainment varying in the
range of —0.006 ~ 2.2 at 1 =525 At t1=0.5, L5
2.5,3.5,4.5and 5.5, the relative velocities with entrain-
ment increases from —0.62 to —4.58 m s~' with a
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F1G. 4. Angular variation of local Nusselt number with and withoul particle entrainment:
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flow direction from right to left. The relative velocity
without entrainment is 5 m s~ ' with a flow direction
from left to righl, slightly larger than —4.58 m s~ '
with entrainment at t=5.5. Thus Nu,—2 with
enltrainment al r = 5.5 has a symmelric profile around
0 = 90, compared to that without entrainment. The
relative velociliesatt = 0.75,1.75,2.75,3.75.4.75 and
5.75 decreases from 3.85to 1.18 ms™ ' with increasing
particle velocity. These relative velocities with entrain-
ment are smaller than 10 m s~ ' without entrainment,
resulting in the lower Nu,—2 with entrainment com-
pared with thal without entrainment.

Figure 5 shows Lhe space-averaged Nusselt number
(Nu,—2) with and withoul particle entrainment as a
function of dimensionless time t for the oscillating
flow with steady Reynolds number Re, = 62.9 and
acouslic Reynolds number Re, = 31.5 for Strouhal
number of 0.001. The space-averaged Nusselt number
is calculated from Nu, using equation (17). As shown
in Fig. 5, Nu,—2 withoul entrainment shows the same
cyclic behavior as the oscillating flow velocity U as
shown in Fig. 3. However, for Nu,—2 wilh entrain-
ment, another high peak al the half time of the period
in each cycle is observed. This happens since the space-
averaged Nusselt number is not dependent on the
direction of the velocity, which changes as a result
of the acoustic field, and is dependent only on the
magnitude of the total flow velocity.

Figure 6 shows the oscillating flow U, the entrained
particle velocity v, and the relative velocity (U—v,) al

2000 Hz, in order Lo investigale the [requency cffect
on the heal transfer past particles entrained in an
oscillating flow with a steady velocity component.
Similar (o the case of /= 50 Hz. Lhe applied acoustic
field U oscillates with an amplitude of Sm's ' around
a steady velocity of 10 m s~ ', giving Re, = 62.9,
Re, =31.5and S = 0.02. As shown in Fig. 3, it takes
more than three cycles in order for Lhe relative velocily
at /= 50 Hz to reach a steady periodic state after the
particle is almosl entrained in the steady velocity U,.
Three cycles at 50 Hz corresponds to 120 cycles for
2000 Hz. Thus Lhe results up Lo around 70 cycles are

,W/0 ENTRAINMENT

TATATATAY,
i N N\W\M |

o "W/ ENTRAINMENT
0 i 3 2 5 [}

DIMENSIONLESS TIME

-7

Nus

FIG. 5. Space-averaged Nussell number with and without
parlicle entrainment as a function ol dimensionless time:
Rey =629, Re, = 31.5, § = 0.0005 (f = 50 Hz).
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FiG. 6. Oscillating flow U. the entrained parlicle velocity ',

and the relative velocity (U—rt,) as a funclion of dimen-
sionless ime : Rey = 62.9. Re, = 31.5,5 = 0.02(/ = 2000 Hz).

shown in the present calculation for /= 2000 Hz due
to severe computational time. The entrained particle
velocity approaches the steady velocity U, (=10 m
s~ '). After the initial and transient period, the relative
velocity is expected to approach the oscillating flow
with an amplitude of 5 m s~' which is the acoustic
velocity U, cos (2n f1). as shown in Fig. 6. Thus the
space-averaged Nusselt number (Nu,—2) with
entrainment has different time histories compared
with Nu,—2 without entrainment, as shown in Fig. 7.
Nu,—2 without entrainment reaches a steady periodic
state at an early cycle and oscillates in the range of
2.8 ~ 5.1. However the value of Nu,—2 with entrain-
ment decreases during the initial and transient period
until it reaches a steady periodic state. Nu,—2 with
entrainment is lower than that without entrainment
due to particle entrainment.

8
5 W/0 ENTRAINMENT
o~
Y
>
P-4
2_
0 T T T T
0 1 2 3 4 S
DIMENSIONLESS TIME
8

W/ ENTRAINMENT

Nug—2

0 T y T T T T
o] 10 20 30 40 50 60 70

DIMENSIONLESS TIME
F1G. 7. Space-averaged Nusselt number with and without

particle entrainment as a function ol dimensionless time:
Rey =629, Rey =31.5.5=0.02 (f = 2000 Hz).

Oscillating flow without a steady velocity

Figure B shows the oscillating flow U, the entrained
particle velocity t, and the relative velocity (U—v,) at
50 Hz, in order Lo investigate heat transfer past par-
ticles entrained in an oscillating flow without a steady
velocity component. The applied acoustic field U
oscillates with an amplitude of 10 ms ™', giving acous-
tic Reynolds number ol 62.9 and Strouhal number ol
0.0005. For this small value of the Strouhal number,
the velocity and temperature field reaches a steady
periodic state afler an early cycle. Thus the following
discussion concenlrates on the results over one cycle
after reaching a steady periodic state, unless it 1s men-
tioned otherwise. While the oscillating flow U oscil-
lates with an amplitude of 10 m s~', the particle
velocity v, oscillates with an amplitude of 2.72 m s~
with a phase lag of about 72 (r = 0.2). Due Lo this
phase lag between an oscillating flow and particle
velocity, the relative velocity, U—uv,. oscillates with
an amplitude of 9.38 m s~ ' slightly lower than an
oscillating flow U which is the relative velocity without
entrainment. The phase lag between an oscillating
flow, U, and the relative velocity, U—v,, is about 18"
(t = 0.05).

Figure 9 shows the quasi-steady, local Nusselt num-
ber variation with angle without steady How cor-
responding to Re, = 62.9 and S = 0.0005. The results
with entrainment are compared with that without
entrainment. At r = 0.0, the oscillating velocity is 10
m s~ ' and the particle velocity is I m s~ '. Thus the
relative velocity with entrainment is 9 m s~ ', lower
than 10 m s~ ' withoul entrainment. Nu,—2 with
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FiG. 8. Oscillating flow U, the entrained particle velocity v,

and the relative velocity (U—~uv,) as a function of quasi-

steady dimensionless time: Re, = 0, Re, = 62.9, S = 0.0005
(f =50 Hz).

entrainment is lower than that without entrainment,
due to the difference in the relative velocity with and
without entrainment. The difference in Nu,—2 at the
stagnation point (0 = 180) is about 7%. In the fol-
lowing dimensionless time 7 = 0.125, the particle vel-
ocity is 2.5 m s~ ' for the oscillating velocity of 7.07
m s~ '. Thus the relative velocity with entrainment is
4.57 m s~ ' which is 54% lower than the relative vel-
ocity without entrainment. Nu,— 2 with entrainment
at the stagnation point (# = 180) is about 25% lower
than that without entrainment. At ¢ = 0.25, the rela-
tive velocity without entrainment is 0 m s~* which is
the same as the oscillating velocity. As shown in refs,
[20, 21], a small steady motion (acoustic stream-
ing) is generated over a spherical particle in the pres-
ence of an acoustic field. Thus, as shown by Ha [7], it
is expected that the phase lag between the applied

acoustic field and the thermal boundary layer, and the
steady streaming results in Nu,—2 without entrain-
ment varying in the range of 0.5 ~ 0.7, even though
the relative velocity is 0 m s~'. However, for the case
with entrainment, the relative velocity is —2.5m s™'
with a stagnation point at § = 0. Thus Nu,—2 with
entrainment varies in the range of —0.001 ~ 3.6,
larger than Nu,—2 without entrainment. In the fol-
lowing dimensionless time t = 0.375, the relative vel-
ocity without entrainment is —7.07 m s~ ' which is
the same magnitude as that at = 0.125 with a flow
direction {rom right to left. Thus Nu,—2 without
entrainment at 7 = 0.375 shows a symmetric profile
around 0 = 90, compared to Nu,—2 without entrain-
ment at T = 0.125. The relative velocity with entrain-
ment at T = 0.375is —8.2 m s~ 'with a flow direction
from right to left. This relative velocity with entrain-
ment at T = 0.375 m s~ ' is about 80% larger than the
relative velocity with entrainment at 7 = 0.125 and
about 17% larger than the relative velocity without
entrainment at t = 0.375. This results in the larger
Nu,—2 with entrainment at t = 0.375, compared to
that with entrainment at T = 0.125 and that without
entrainment al t =0.375. The differences in the
maximum MNu,—2 at the stagnation point with
entrainment at t = 0.375 are 8.4 and 43%, respec-
tively, compared with that without entrainment at
7 = 0.375 and that with entrainment at © = 0.125. At
7 = 0.5, the oscillating velocity and the relative vel-
ocity without entrainment have a peak value of —10
m s~ '. The relative velocity with entrainment at
7=0.5i159 m s~ ' which is the same magnitude as the
relative velocity with entrainment at t = 0.0 and 10%
lower than the relative velocity without entrainment
at 7 =0.5. Nu,—2 with entrainment at ¢ = 0.5 has
a symmetric shape around # = 90, compared with
Nu,—?2 with entrainment at ¢ = 0, and is lower than
Nu,—2 without entrainment at 7 = 0.5 with 7.5%
difference at a stagnation point. The distribution of
Nug—2 with and without particle entrainment at a
dimensionless time from 7 = 0.5 to 1.0 is very similar
to that from t = 0.0 to 0.5 except that they are anti-
symmetric.

The space-averaged Nusselt number with and with-
out particle entrainment is shown in Fig. 10 for
Re, = 62.9 and Re, = 0.0 for S = 0.0005 (f = 50 Hz)
as a function of dimensionless time. Nu,—2 with and
without entrainment has two high and low peak values
over one cycle corresponding to the maximum and
minimum values of the relative velocity with and with-
out entrainment, respectively. Nu,—2 with entrain-
ment varies in the range of 0.68 ~ 3.84 over one cycle
after the steady periodic state has been reached,
whereas Nu,—2 without entrainment is in the range
of 0.65 ~ 4.04, due to about 6% difference in the
relative velocity with and without entrainment. The
phase lag between the space-averaged Nusselt number
with and without entrainment is about 18°.

Figure 11 shows the oscillating flow U, the
entrained particle velocity v, and the relative velocity
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FiG. 10. Spacc-averaged Nusselt number with and withoul
parlicle entrainment as a [unction ol quasi-steady dimen-
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U, m/s
o
1

00 02 04 06 08 1.0
QUASI-STEADY DIMENSIONLESS TIME

0.04

0.004

vp. m/s

—0.04

-0.08

.0 0.2 04 08 Y 1.0
QUASI-STEADY DIMENSIONLESS TIME

[=]

U-vp, m/s

10 . r
00 02 04 06 Y 1.0
QUASI-STEADY DIMENSIONLESS TIME

FiG. 1T. Oscillating flow U, the entrained particle velocity v,

and the relative velocity (U—r,) as a function of quasi-

steady dimensionless time: Re, =0, Re, = 62.9, S = 0.02
(f = 2000 Hz).

(U—r,) for Re, = 62.9 and § = 0.02 (/ = 2000 Hz).
The particle velocity oscillates with an amplitude of
about 0.07 m s~ ' with 81 phase lag (t = 0.225)
between U and r,. Since the particle velocity with
particle entrainment oscillates with very small ampli-
tude, the relative velocity with entrainment 1s almost
the same as the oscillating flow velocity U which is the
relative velocity without entrainment. Thus the local
and space-averaged Nusselt number with particle
entrainment i1s almost the same as that without par-
ticle entrainmenl. Since the results {or the local and
space-averaged Nusselt number without particle
cnlrainment /= 2000 Hz has been shown in delail
by Ha [7]. the discussion about these results are not
shown in the present paper.

SUMMARY AND CONCLUSIONS

The axisymmetric and laminar conservation equa-
tions for mass, momentum and energy are solved
numerically in order (o investigate the heat transfer
past a single spherical parlicle entrained in an
oscillating flow with and without a steady velocity
component. The results with particle entrainment are
compared with the case without particle entrainment.
The following are the major findings of the present
studies.

The moving particle in the presence of an oscillating
flow with a steady velocity is entrained in the steady
velocity U, and the relative velocity close to the oscil-
tating velocity U, cos(2x fr) can be used for heat
transfer past particles. However, for the stationary
particles fixed in the atmosphere, the sum of oscil-
lating and steady velocity is used for heat transfer
past particles. This results in the lower space-averaged
Nusselt number with particle entrainment compared
with that without particle entrainment, corresponding
to almost the steady velocity.

In the case of an oscillating flow without a steady
velocity, with increasing frequency, the magnitude of
particle entrainment decreases and the phase lag
between the moving particle and the oscillating flow
increases. At 50 Hz, even though the particle is
entrained substantially in the oscillating flow, the rela-
tive velocity between the flow and the particle has an
amplitude slightly lower than that of oscillating flow
U due to the phase lag existing between the moving
particle and the oscillating flow. This results in the
slightly lower space-averaged Nusselt number with
entrainment compared with the case without entrain-
ment. The difference in the maximum value of Nu,—2
with and without particle entrainment is about 5.2%
for Rey =0, Re, = 62.9 and S = 0.0005 (f = 50 Hz)
and the phase lag between Nu,—2 with and without
entrainment is about 18°. If the frequency is increased
to 2000 Hz, the particle entrainment is very small
and the relative velocity with and without particle
entrainment is almost the same, resulting in almost
the same space-averaged Nusselt number with and
without particle entrainment.
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